
CREATE

Clone an existing repository

$ git clone ssh://user@domain.com/repo.git

Create a new local repository

$ git init

LOCAL CHANGES

Changed files in your working directory

$ git status

Changes to tracked files

$ git diff

Add all current changes to the next commit

$ git add .

Add some changes in <file> to the next commit

$ git add -p <file>

Commit all local changes in tracked files

$ git commit -a

Commit previously staged changes

$ git commit

Change the last commit
Don‘t amend published commits!

$ git commit --amend

COMMIT HISTORY

Show all commits, starting with newest

$ git log

Show changes over time for a specific file

$ git log -p <file>

Who changed what and when in <file>

$ git blame <file>

BRANCHES & TAGS

List all existing branches

$ git branch -av

Switch HEAD branch

$ git checkout <branch>

Create a new branch based
on your current HEAD

$ git branch <new-branch>

Create a new tracking branch based on
a remote branch

$ git checkout --track <remote/branch>

Delete a local branch

$ git branch -d <branch>

Mark the current commit with a tag

$ git tag <tag-name>

UPDATE & PUBLISH

List all currently configured remotes

$ git remote -v

Show information about a remote

$ git remote show <remote>

Add new remote repository, named <remote>

$ git remote add <shortname> <url>

Download all changes from <remote>, but
don‘t integrate into HEAD

$ git fetch <remote>

Download changes and directly
merge/integrate into HEAD

$ git pull <remote> <branch>

Publish local changes on a remote

$ git push <remote> <branch>

Delete a branch on the remote

$ git branch -dr <remote/branch>

Publish your tags

$ git push --tags

MERGE & REBASE

Merge <branch> into your current HEAD

$ git merge <branch>

Rebase your current HEAD onto <branch>
Don‘t rebase published commits!

$ git rebase <branch>

Abort a rebase

$ git rebase --abort

Continue a rebase after resolving conflicts

$ git rebase --continue

Use your configured merge tool to solve
conflicts

$ git mergetool

Use your editor to manually solve conflicts
and (after resolving) mark file as resolved

$ git add <resolved-file>

$ git rm <resolved-file>

UNDO

Discard all local changes in your working
directory

$ git reset --hard HEAD

Discard local changes in a specific file

$ git checkout HEAD <file>

Revert a commit (by producing a new commit
with contrary changes)

$ git revert <commit>

Reset your HEAD pointer to a previous commit
…and discard all changes since then

$ git reset --hard <commit>

…and preserve all changes as unstaged
changes

$ git reset <commit>

…and preserve uncommitted local changes

$ git reset --keep <commit>

30-day free trial available at
www.git-tower.com

GIT CHEAT SHEET

fournova

The best Git Client for Mac & Windows

presented by Tower - the best Git client for Mac and Windows

http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=cheat+sheet+pdf&utm_content=german+version&utm_campaign=Tower+website
https://www.git-tower.com
https://www.git-tower.com

BEST PRACTICES

VERSION CONTROL

30-day free trial available at
www.git-tower.com

fournova

The best Git Client for Mac & Windows

COMMIT RELATED CHANGES

A commit should be a wrapper for related

changes. For example, fixing two different

bugs should produce two separate commits.

Small commits make it easier for other de-

velopers to understand the changes and roll

them back if something went wrong.

With tools like the staging area and the abi-

lity to stage only parts of a file, Git makes it

easy to create very granular commits.

COMMIT OFTEN

Committing often keeps your commits small

and, again, helps you commit only related

changes. Moreover, it allows you to share your

code more frequently with others. That way

it‘s easier for everyone to integrate changes

regularly and avoid having merge conflicts.

Having few large commits and sharing them

rarely, in contrast, makes it hard to solve

conflicts.

DO NOT COMMIT HALF-DONE WORK

You should only commit code when it‘s com-

pleted. This doesn‘t mean you have

to complete a whole, large feature before

committing. Quite the contrary: split the

feature‘s implementation into logical chunks

and remember to commit early and often.

But don‘t commit just to have something in

the repository before leaving the office at the

end of the day. If you‘re tempted to commit

just because you need a clean working copy

(to check out a branch, pull in changes, etc.)

consider using Git‘s «Stash» feature instead.

TEST CODE BEFORE YOU COMMIT

Resist the temptation to commit some-

thing that you «think» is completed. Test it

thoroughly to make sure it really is completed

and has no side effects (as far as one can tell).

While committing half-baked things in your

local repository only requires you to forgive

yourself, having your code tested is even more

important when it comes to pushing/sharing

your code with others.

WRITE GOOD COMMIT MESSAGES

Begin your message with a short summary of

your changes (up to 50 characters as a gui-

deline). Separate it from the following body

by including a blank line. The body of your

message should provide detailed answers to

the following questions:

› What was the motivation for the change?

› How does it differ from the previous

implementation?

Use the imperative, present tense («change»,

not «changed» or «changes») to be consistent

with generated messages from commands

like git merge.

VERSION CONTROL IS NOT A BACKUP
SYSTEM

Having your files backed up on a remote

server is a nice side effect of having a version

control system. But you should not use your

VCS like it was a backup system. When doing

version control, you should pay attention to

committing semantically (see «related chan-

ges») - you shouldn‘t just cram in files.

USE BRANCHES

Branching is one of Git‘s most powerful

features - and this is not by accident: quick

and easy branching was a central requirement

from day one. Branches are the perfect tool

to help you avoid mixing up different lines

of development. You should use branches

extensively in your development workflows:

for new features, bug fixes, ideas…

AGREE ON A WORKFLOW

Git lets you pick from a lot of different work-

flows: long-running branches, topic bran-

ches, merge or rebase, git-flow… Which one

you choose depends on a couple of factors:

your project, your overall development and

deployment workflows and (maybe most

importantly) on your and your teammates‘

personal preferences. However you choose to

work, just make sure to agree on a common

workflow that everyone follows.

HELP & DOCUMENTATION

Get help on the command line

$ git help <command>

FREE ONLINE RESOURCES

http://www.git-tower.com/learn

http://rogerdudler.github.io/git-guide/

http://www.git-scm.org/

http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=cheat+sheet+pdf&utm_content=german+version&utm_campaign=Tower+website
https://www.git-tower.com
https://www.git-tower.com
http://www.git-tower.com/learn/?utm_source=Tower+Blog&utm_medium=cheat+sheet+pdf&utm_content=german+version&utm_campaign=Tower+website
http://rogerdudler.github.io/git-guide/
http://www.git-scm.org/

