
Upload Local Changes
to the Remote Server

$ git push

To upload the local changes you made in
your current HEAD branch, all you have to
do is call “git push”.

4

Integrate Remote Changes

$ git pull

To integrate new changes from the remote
repository, you simply call “git pull”.

This will update your current HEAD branch
with new data from its counterpart branch
on the remote. The changes will be directly
merged into your local working copy.

3

Local & Remote Repositories

As Git is a so-called “decentralized”
version control system, a remote repository
is optional. In fact, everything we did until
now happened on your local machine, in
your local repository – no internet/network
connection was necessary.

However, if you want to collaborate with
others, you need a remote repository on a
server. You don’t have to share all of your
work though: you can decide for each of
your local branches if you want to share it
or not.

Stay Up-To-Date
About Remote Changes

$ git fetch <remote>

When collaborating with others on a
project, you’ll want to stay informed about
their changes. The “git fetch” command
downloads new changes from a remote
repository – but doesn’t integrate them into
your local working copy. It only informs you
about what happened on the remote, leaving
the decision on what to integrate to you.

2

Publish a Local Branch

$ git push -u <remote>
 <local-branch>

To share one of your local branches with
your teammates, you need to publish it
on a remote server with the “git push”
command.

Track a Remote Branch

$ git checkout --track
 <remote/branch>

If there’s an interesting remote branch that
you want to work on, you can easily get
your own local copy. Use the “git checkout”
command and tell it which remote branch
you want your new local branch to base off.

1

Integrate Changes

$ git merge <branch-to-integrate>

When your new feature is ready, you might
want to integrate it into another branch
(e.g. your production or testing branch).

First, switch to the branch that is supposed
to receive these changes. Then, call the
“git merge” command with the name of the
branch you want to integrate.

3

Understanding Branches

We often have to work on multiple things in
parallel: feature X, bugfix #32, feature Y…
This makes it all too easy to lose track of
where each change belongs. Therefore, it’s
essential to keep these contexts separate
from each other.

Grouping related changes in their own
context has multiple benefits: your
coworkers can better understand what
happened because they only have to look
at code that really concerns them. And you
can stay relaxed, because when you mess
up, you mess up only this context.

Branches do just this: they provide a
context that keeps your work and your
changes separate from any other context.

HEAD Branch

At each point in time, you can only work in
one context – the context of the currently
checked out branch (which is also called
the “HEAD” branch in Git).

Your project’s working directory contains
the files that correspond to this branch.
When you check out a different branch
(make it “HEAD”), Git replaces the files in
your working directory with the ones that
match this branch.

Switch Contexts

$ git checkout <new-branch-name>

To start working on a different context, you
need to tell Git that you want to switch to
it. You do this by “checking out” the branch
with the “git checkout” command.

Every commit you make – until you switch
branches again – will be recorded in this
branch and kept separate from your other
contexts.

2

Start a New Feature

$ git branch <new-branch-name>

Whenever you start a new feature, a
new experiment or a new bugfix, you
should create a new branch. In Git, this
is extremely fast and easy: just call “git
branch <new-branch-name>” and you have
a new, separate context.

Don’t be shy about creating new branches:
it costs you nothing.

1

Inspect the Commit History

$ git log

The “git log” command lists all the commits
that were saved in chronological order.
This allows you to see which changes were
made in detail and helps you comprehend
how the project evolved.

7

Keep the Overview

$ git status

Running the “git status” command right
after a commit proves to you: only the
changes that you added to the Staging
Area were committed.

All other changes have been left as local
changes: you can continue to work with
them and commit or discard them later.

6

Commit all Staged Changes

$ git commit -m "message"

A commit wraps up all the changes you
previously staged with the “git add”
command. To record this set of changes
in Git’s database, you execute the “git
commit” command with a short and
informative message.

5

Add Files to the “Staging Area”

$ git add <filename>

Only because a file was changed doesn’t
mean it will be part of the next commit!
Instead, you have to explicitly decide which
changes you want to include. To do this,
you add them to the so-called “Staging
Area” with the “git add” command.

4

Keep the Overview

$ git status

The “git status” command tells you what
happened since the last commit: which files
did you change? Did you create any new
ones or delete old ones?

$ git status
#
Changes not staged for commit:
modified: about.html
deleted: robots.txt
#
Untracked files:
login.html
#
no changes added to commit

$ git add about.html
#
Changes to be committed:
modified: about.html
#
Changes not staged for commit:
deleted: robots.txt
#
Untracked files:
login.html

$ git status
#
Changes not staged for commit:
deleted: robots.txt
#
Untracked files:
login.html
#
no changes added to commit

$ git commit -m "Updated about page"

[master 9d3f32b] Updated about page
1 file changed, 29 insertions(+)

$ git log

commit 9d3f32ba002110ee0022fe6d2c5308
Author: Tobias Günther <tg@fournova.c
Date: Mon Jul 8 09:56:33 2013 +0200

 Updated about page

3

File Status
Files that aren’t yet under
version control are called
“untracked”…

…while files that your version
control system already knows
about are “tracked” files.

A tracked file can either be
“unmodified” (meaning it wasn’t
changed since the last commit)...

...or “modified” (meaning it has
local changes since it was last
committed).

Work on Your Files
Modify, rename and delete files or add new
ones. Do all of this in your favorite editor
/ IDE / file browser – there‘s nothing to
watch out for in this step!

2

Work on an Existing Project

$ git clone <remote-url>

The “git clone” command is used to
download a copy of an existing repository
from a remote server. When this is done,
you have a full-featured version of the
project on your local computer – including
its complete history of changes.

Start a New Project

$ git init

Executing the “git init” command in the
root folder of your new project creates a
new and empty Git repository. You’re ready
to start getting your files under version
control!

1

30-day free trial available at
www.git-tower.com

SHARE WORK

COLLABORATE

LOCAL
COMPUTER

LOCAL
REPOSITORY

REMOTE
SERVER

REMOTE
REPOSITORY

VIEW HISTORY
ADD & DELETE

BRANCHES

MODIFY, ADD &
DELETE FILES

The best Git Client for Mac & Windows

The Basics

Sharing Work via
Remote Repositories

Branching & Merging

Understanding
the Workflow of
Version Control

presented by Tower - the best Git client for Mac and Windows

?

m

BUGFIX #32

FEATURE B

feature-a

master

feature-b

HEAD

C4

C1

C2

C6 C7

C5C4C1

C2 C3

C6

C3 C5 C7

http://www.git-tower.com/?utm_source=Tower+Blog&utm_medium=workflow+version+control+pdf&utm_content=english+version&utm_campaign=Tower+website
https://www.git-tower.com
https://www.git-tower.com
https://www.git-tower.com

